Regulation of xylem cell fate
نویسندگان
چکیده
The vascular system is organized throughout the plant body for transporting water, nutrients, and signaling molecules. During vascular development, xylem, phloem, and procambial/cambial cells are produced in a spatiotemporally organized manner. Several key regulators for xylem cell patterning and differentiation have been discovered, including auxin, cytokinin, CLE peptides, microRNAs, HD-ZIPIIIs, VNDs, and moving transcription factors SHR and AHLs. Recent studies are identifying functional interactions among these factors that ultimately determine xylem cell fate. This review focuses on regulatory networks underlying xylem cell fate determination in root vascular development.
منابع مشابه
Simultaneous regulation of miR-451 and miR-191 led to erythroid fate decision of mouse embryonic stem cell
Objective(s): Various microRNAs (miRNAs) are expressed during development of mammalian cells, when they aid in modulating gene expression by mediating mRNA transcript cleavage and/or regulation of translation rate. miR-191 and miR-451 have been shown to be critical regulators of hematopoiesis and have important roles in the induction of erythroid fate decision. So, the aim of this study is inve...
متن کاملSignaling, transcriptional regulation, and asynchronous pattern formation governing plant xylem development
In plants, vascular stem cells continue to give rise to all xylem and phloem cells, which constitute the plant vascular system. During plant vascular development, the peptide, tracheary element differentiation inhibitory factor (TDIF), regulates vascular stem cell fate in a non-cell-autonomous fashion. TDIF promotes vascular stem cell proliferation through up-regulating the transcription factor...
متن کاملTranscriptional switches direct plant organ formation and patterning.
Development of multicellular organisms requires specification of diverse cell types. In plants, development is continuous and because plant cells are surrounded by rigid cell walls, cell division and specification of daughter cell fate must be carefully orchestrated. During embryonic and postembryonic plant development, the specification of cell types is determined both by positional cues and c...
متن کاملRegulation of vascular development by CLE peptide-receptor systems.
Cell division and differentiation of stem cells are controlled by non-cell-autonomous signals in higher organisms. The plant vascular meristem is a stem-cell tissue comprising procambial cells that produce xylem cells on one side and phloem cells on the other side. Recent studies have revealed that TDIF (tracheary element differentiation inhibitory factor)/CLE41/CLE44 peptide signal controls th...
متن کاملNon-cell-autonomous control of vascular stem cell fate by a CLE peptide/receptor system.
Land plants evolved a long-distance transport system of water and nutrients composed of the xylem and phloem, both of which are generated from the procambium- and cambium-comprising vascular stem cells. However, little is known about the molecular mechanism of cell communication governing xylem-phloem patterning. Here, we show that a dodecapeptide (HEVHypSGHypNPISN; Hyp, 4-hydroxyproline), TDIF...
متن کامل